The HIPASS Catalogue: III - Optical Counterparts and Isolated Dark Galaxies

† mtdoyle@physics.uq.edu.au

1 Department of Physics, University of Queensland, Brisbane, QLD 4072 Australia
2 WFAU, Institute for Astronomy, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK
3 School of Physics, University of Melbourne, VIC 3010, Australia
4 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore MD 21218, USA
5 European Southern Observatory, Karl-Schwarzschild-Str.2, 85748 Garching b. Munich, Germany
6 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK
7 Australia Telescope National Facility, CSIRO, P.O. Box 76, Epping, NSW 1710, Australia
8 Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122 Australia
9 Jodrell Bank Observatory, University of Manchester, Macclesfield, Cheshire, SK11 9DL, UK
10 School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3YB, UK
11 School of Physics and Astronomy, University of Western Sydney Macarthur, P.O.Box 555, Campbelltown, NSW 2560, Australia
12 Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Cotter Road, Weston, ACT 2611, Australia
13 University of Technology Sydney, Broadway NSW 2007, Australia
14 Institute for Astrophysics, University of New Mexico, 800 Yale Blvd, NE, Albuquerque, NM 87131, USA
15 WIYN, Inc. 950 North Cherry Avenue, Tucson, AZ, 85719 USA
16 ASTRON, P.O. Box 2, 7990 AA Dwingeloo, The Netherlands
17 CASA, University of Colorado, Boulder, CO 80309-0389, USA
18 Anglo-Australian Observatory, P.O.Box 296, Epping, NSW 1710, Australia
19 School of Physics, University of Sydney, NSW 2006, Australia
20 Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, UK

ABSTRACT

We present the largest catalogue to date of optical counterparts for HI radio-selected galaxies, Hopcat. Of the 4315 HI radio-detected sources from the HI Parkes All Sky Survey (HIPASS) catalogue, we find optical counterparts for 3618 (84 per cent) galaxies. Of these, 1798 (42 per cent) have confirmed optical velocities and 848 (20 per cent) are single matches without confirmed velocities. Some galaxy matches are members of galaxy groups. From these multiple galaxy matches, 714 (16 per cent) have confirmed optical velocities and a further 258 (6 per cent) galaxies are without confirmed velocities. For 481 (11 per cent), multiple galaxies are present but no single optical counterpart can be chosen and 216 (5 per cent) have no obvious optical galaxy present. Most of these ‘blank fields’ are in crowded fields along the Galactic plane or have high extinctions.

Isolated ‘Dark galaxy’ candidates are investigated using an extinction cut of $A_B < 1$ mag and the blank fields category. Of the 3692 galaxies with an A_B extinction < 1 mag, only 13 are also blank fields. Of these, 12 are eliminated either with follow-up Parkes observations or are in crowded fields. The remaining one has a low surface brightness optical counterpart. Hence, no isolated optically dark galaxies have been found within the limits of the HIPASS survey.
1 INTRODUCTION

The blind HI Parkes All Sky Survey (HIPASS), on the Parkes Radio Telescope was completed in 2000. This survey covers the whole of the southern sky up to Dec. = +2°. The HIPASS catalogue, HICAT, represents the largest HI-selected catalogue at this time and is presented in a series of papers, this one being the third. In Paper I, Meyer et al. (2004) describe the selection procedure, global sample properties and the catalogue. In Paper II, Zwaan et al. (2004), describe the completeness and reliability of HICAT. Though the survey and catalogue are developed to be free of optical selection bias, it is nevertheless important for several scientific applications to have accompanying optical data. This paper details the process taken to find the optical counterparts for HICAT sources.

Two of the (many) motivations for the HIPASS survey are to investigate low surface brightness (LSB) and dark galaxies. For LSB galaxies, the goal is to provide a large sample sensitive to LSB galaxies previously undetected by optical methods, such as Malin 1 type objects (Bothun et al. 1987). By using an HI radio selected sample, any study of LSB galaxies will have minimal optical bias. It was originally thought that a large population of LSB galaxies would be revealed by HI surveys like HIPASS (Disney 1976), but they have not been detected in the recent surveys (e.g. Minchin et al. 2004).

At the limit of LSB are “dark galaxies” with no detected optical emission. It is important to separate true dark galaxies from gas clouds which are directly associated with optical galaxies, often through tidal interactions. For the purposes of this paper we define a dark galaxy as any HI source that contains gas (and dark matter) but no detectable stars, and is sufficiently far away from other galaxies, groups or clusters such that a tidal origin can be excluded. One of the most striking examples of associated HI gas clouds is the Leo ring, a massive cloud of tidally-disrupted gas in the Leo galaxy group (Schneider et al. 1983). More recently, early studies of the HIPASS survey have detected associated gas clouds in the NGC 2442 group (Ryder et al. 2001) and in the Magellanic Cloud-Milky Way system (Kilborn et al. 2000).

There is a range of theoretical opinion about the existence of dark galaxies. Verde, Oh & Jimenez (2002) argue that a large fraction of low-mass dark matter halos would form stable gas disks on contraction and thus not exhibit star formation, whereas Taylor & Webster (2005) conclude that HI clouds cannot exist in equilibrium with the local universe without becoming unstable to star formation.

There are few, if any, true dark galaxy detections. Some sources, initially described as dark galaxy detections, have since been identified with optical galaxies such as the proto-galaxy HI 1225+01 (re-detected here as HIPASS J1227+01) in the Virgo cluster (Giovanelli & Haynes 1989), later detected in the optical by Salzer et al. (1991). Several authors have placed upper limits on the numbers of dark galaxies in previous HI surveys. Fisher & Tully (1981) found no evidence for dark galaxies in a survey of 153 deg² and estimated that the total mass of any dark HI clouds (10⁷ M_\odot < M_{HI} < 10¹⁰ M_\odot) was less than 6 per cent that in normal galaxies.

More recently Briggs (1990) showed that the space density of dark galaxies is less than 1 percent that of normal galaxies for masses M_{HI} < 10⁶ M_\odot, and the the Arecibo surveys by Zwaan et al. (1997) also failed to detect any dark galaxies in the range (10⁷-8 M_\odot < M_{HI} < 10¹⁰ M_\odot).

Previous to HIPASS, several blind HI surveys that identify optical counterparts have been carried out, such as the Arecibo HI Sky Survey, AHISS, (Sorar 1994; 66 sources), the Slice Survey (Spitzak & Schneider 1998; 75 sources) and the Arecibo Dual-Beam Survey (ADBS, Rosenberg & Schneider 2000; 265 sources). However HICAT is much larger, containing 4315 HI radio detected objects and covers the whole southern sky from 300 to 12700 km s⁻¹.

Newly catalogued galaxies in the HIPASS Bright Galaxy Catalogue (BGC, Koribalski et al. 2004), are described in Ryan-Weber et al. (2002). Of the 1000 galaxies, 939 have optical counterparts, four are high velocity clouds and 57 were deemed to be obscured by dust or confused with stars having galactic latitudes $|b|$ < 10°. To date all previous HIPASS-based studies have conclude that there are no dark galaxies or invisible HI clouds not gravitationally bound to any stellar system present. In using our HICAT optical catalogue, HOPCAT, which incorporates the complete Hipass catalogue, a more comprehensive search for isolated dark galaxies in the southern sky is carried out.

In Section 2 we describe the method we use to identify the optical counterparts for the HICAT sources, discuss the input data, how the images are analysed and the process taken to calibrate the magnitudes in the B_J, R and I bands. In Section 3 we introduce the HIPASS optical catalogue, HOPCAT. Section 4 lists and analyses the results of the matching process, investigates the optical properties and candidate dark galaxies. A summary of our work is given in Section 5.

2 SELECTION OF OPTICAL COUNTERPARTS

The position of each HI source is used to find the matching optical image. Since HICAT covers a velocity range from 300 to 12700 km s⁻¹, finding an optical counterpart, especially those with small peak flux density and at the limits of the survey, poses a variety of challenges.

In the following sections we describe the preliminary investigations undertaken into finding the best method to optically match the HI radio sources. We detail the image analysis, steps taken to minimize the various problems that arise in matching extended objects and calibrate the resulting magnitudes. We also review what methods and resources are required to cross-check velocities in the matching process and describe the actual matching process in detail.

2.1 Preliminary Investigations

In our preliminary work to identify the best method to find the optical counterparts, we make use of the both the SuperCOSMOS image and data catalogues (Hambly et al. 2001a; Hambly, Irwin & MacGillivray 2001b; Hambly et al.2001c). The SuperCOSMOS data catalogue (hereafter SuperCOSMOS data) contains results from image analysis originally optimized for faint star/galaxy classification. This causes prob-

A northern extension to +25° has also been observed and the resulting catalogue is in preparation.
lems in the recognition of bright extended objects such as the HIPASS galaxies.

When each image from the SuperCOMOS image catalogue (hereafter SuperCOS images) is analysed, ellipses are produced that represent an area around each object above a particular sky intensity for that particular plate. The integrated flux and hence the isophotal magnitude is calculated using these ellipses. However, in the case of the SuperCOS data’s ellipses (hereafter SuperCOS ellipses), multiple ellipses can be produced for a single object, especially for extended ones, that segment the area and result in incorrect magnitudes. A different image analysis approach is needed.

2.2 Optical Image Data

Using the results from the preliminary investigations above, the SuperCOS image is optimal for our purposes. The scanned SuperCOS images have a 10-mm (0.67 arcsec) resolution (Hambly et al. 2001b). Each image is required to cover a 7 arcmin radius centred on the HiCat position to allow for any possible uncertainties in the original coordinates. Using the original positions of the 4315 HI detections from HiCat, 15×15 arcmin B, R- and J-band SuperCOS images, each centred on the HiCat position are obtained. Independent analysis of each image needs to overcome any segmentation and photometry problems we encounter using the SuperCOS ellipses.

The SExtractor image analysis package (Bertin & Arnouts 1996) is used to analyse each SuperCOS image and an SExtractor ellipse catalogue (hereafter SEX ellipses) is produced containing ellipses for each object within the image using the method described in Section 2.1. For the majority of the SuperCOS images, we use the default analysis parameters of SExtractor that are optimised for extended and bright objects and that require an higher contrast to detect an object. However, for some objects, the ellipse also includes foreground stars. Therefore a second set of SExtractor parameters, that are more likely to break up detections into smaller objects and that require a much lower contrast to detect fainter objects, are used. A total of 91 images using the second set of parameters are included for the final SEX ellipses.

The magnitudes included in our catalogue are based on the mag_auto function of SExtractor, which is defined as ‘Kron-like elliptical aperture magnitudes’ (Bertin & Arnouts 1996). The magnitude measurements are calculated from the SEX ellipses produced by analysing the B_j-band images only and are uncalibrated. Our calibrations of the SExtractor B_j, R and J magnitudes, using the SuperCOS data’s zero point calibration, are described in Section 2.4.2.

2.3 Optical spectroscopic Data

Accurately matching the HI radio detections with their optical counterparts requires a verification method. Using the velocity measurements from HiCat is one way to cross-check the validity of the optical match. Two available resources for velocity cross-checking are NED ² and

² The NASA/IPAC Extragalactic Database (NED) is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

Figure 1. HiCat sources found in the 6dFGS Pre-release Data for the whole southern sky, showing the 6dFGS’s observed and unobserved areas. We use 6dFGS velocities for cross-checking the HiCat velocities to verify optical galaxy matches.

The 6dFGS, an on-going survey of the complete southern sky, is a uniform, high quality dataset that includes redshift measurements. Though 6dFGS is not complete, the sky coverage to date is very useful for our purposes as possible optical counterparts to HIPASS sources are included in their observing list. The data we use is not publicly available but are obtained directly from the 6dFGS team and is the latest available at the time. For 6dFGS sky coverage, see Fig. 1.

2.4 Magnitude Calibration

The SuperCOS data allows for magnitudes to be calculated as galaxies regardless of whether they are classified as a star or a galaxy (Hambly et al. 2001b). This would have been ideal for our purposes, however, we are not able to use this data as discussed in Section 2.1.

Instead, we use SuperCOS images analysed using the SExtractor image analysis package. This enables us to choose parameters to calculate the area for the SEX ellipses that represents the total galaxy area and hence determine reliable magnitudes. However, this raises problems because
Figure 2. An example of the relationship between the calibrated SuperCOS data magnitudes and uncalibrated SExtractor magnitudes for every object in a single image. All 4315 images are plotted in this way and by using the slope and intercept from the line of best fit, the zero-point calibration is calculated. We limit the magnitude range used in fitting the line of best fit to exclude object that are too faint or bright, such as very distant objects or foreground stars that may distort the results.

On examination of the images, we find there are variations in the background levels from plate to plate. We use the relationship between calibrated magnitudes of SuperCOS data and SExtractor, respectively.

2.4.1 Plate to plate differences

On examination of the images, we find there are variations in the background levels from plate to plate. We use the relationship between calibrated magnitudes of SuperCOS data and SExtractor to find the zero-point calibration values. The magnitude rms of the SuperCOS data (zero-point corrected) for the magnitude limit of HOPCAT’s are $\sigma_B = 0.08$, $\sigma_R = 0.04$ and $\sigma_I = 0.08$ mag (Hambly et al. 2001b). For each image the apparent magnitude of every object is plotted and by fitting and using the values from the best line of fit for each plot, a magnitude calibration value for each plate is determined, see Fig. 2. The magnitude range of the SuperCOS and SExtracted data has been limited for the line of best fit determination to exclude extremely faint or bright galaxies that may distort the results.

2.4.2 Matched Galaxies B_j, R and I Magnitude Calibration

Once the zero-point calibrations for the SuperCOS images are made, we further investigate the calibration for large galaxies by using magnitudes for optically matched galaxies only. We use the relationship between the calibrated SuperCOS data and the zero-point calibrated SExtractor magnitudes to determine calibrated magnitudes. The SuperCOS data is obtained using the ‘parent’ image deblend parameters to minimise the segmentation problem as previously discussed in Section 2.1. Parent image deblends minimise the number of SuperCOS ellipses calculated for a single object. However, on plotting the SuperCOS data and zero-point calibrated SExtractor magnitudes, we find outliers owing to the segmentation problem. We remove these outliers and a line of best fit is determined, Fig. 3. Using the slope and intercept from the line of best fit and the zero-point calibrated SExtractor magnitudes (Table 1), calibrated B_j, R and I magnitudes are calculated.

The SuperCOS data calculates the B_j, R and I magnitudes from analysis of B_j, R and I images independently, hence the resulting SuperCOS ellipses for each band vary. However, the SExtractor magnitudes of HOPCAT are calculated using SExtractor from B_j-band images only. Using the resulting B_j-based SExtractor ellipses, the R and I magnitudes are calculated using SExtractor analysis of R and I images. As the area of the B_j-based SExtractor ellipses are generally larger than those of the R and I images, the resulting R and I magnitudes will be slightly biased.

To check our final calibration we compare the HOPCAT-calibrated magnitudes with published magnitudes from NED and we find a standard deviation of $\sigma = 0.6$ mag. This is smaller than the overall spread from our calibration calculations.

2.5 The HI Radio-Optical Matching process

An automated visual interactive program (ADRIC), where images centred on each HIPASS source position are viewed by several people, has been developed. ADRIC utilizes SuperCOS images, SExtractor B_j-, R- and I-image analysis, and NED and 6dFGS velocities for cross-checking, to reliably match HiCAT HI sources with their optical counterparts.

The matching process consists of downloading B_j-, R- and I-band SuperCOS images and analysing each one using the two sets of image analysis parameters in SExtractor to produce SExtractor as discussed in Section 2.2. These SExtractor ellipses represent the area of each object and are superimposed on to the image. We use published NED and optical 6dFGS velocities to cross-check the HIPASS velocities to confirm the optical match. The NED velocities are checked to ensure that we only use velocities from optical and high-resolution HI radio observations.

When ADRIC is activated the user views each image, centred on the HiCAT position, with the superimposed SExtractor ellipses. The original HiCAT velocities as well as the 6dFGS and NED velocities are displayed for cross-checking purposes. Each of the 4315 images is matched independently.

<table>
<thead>
<tr>
<th>Band</th>
<th>m</th>
<th>σ_m</th>
<th>c</th>
<th>σ_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_j</td>
<td>1.018</td>
<td>0.0002</td>
<td>-0.438</td>
<td>0.0019</td>
</tr>
<tr>
<td>R</td>
<td>0.887</td>
<td>0.0019</td>
<td>2.2</td>
<td>0.01</td>
</tr>
<tr>
<td>I</td>
<td>0.926</td>
<td>0.0013</td>
<td>2.02</td>
<td>0.011</td>
</tr>
</tbody>
</table>
Figure 3. SuperCOS data’s calibrated B_j magnitudes versus SExtractor uncalibrated B_j magnitudes. By fitting and using the values from the line of best fit, a calibration value for bright objects is determined and the calibrated magnitude is calculated for each optically matched galaxy. The corresponding Hicat integrated flux strengths (Jy km s$^{-1}$) are listed in the inserted panel.

Figure 4. Screenshot of the automated visual interactive program (Adric) with NED and 6dF velocity confirmation for the chosen galaxy.

Figure 5. Screenshot of the automated visual interactive program (Adric) with multiple possible galaxy choices. Here the chosen galaxy is the one with the smallest Hipass-NED velocity difference, 3320 km s$^{-1}$.

by three people (MTD, MJD and DJR). This multiple, independent matching eliminates, as far as possible, biases by any one person in the choosing of galaxy matches.

We use a two-digit match category number to quantify the choices made as well as the quality of the resulting magnitudes. The first digit represents the galaxy match choice (Table 2). The second digit is the quality of the magnitudes based on SEx ellipse coverage. A 0 signifies ‘good photometry and segmentation’; 1 signifies ‘poor photometry’ where one or more foreground stars are within the SEx ellipse choice; and 2 signifies ‘poor segmentation’ and/or ‘poor photometry’, where the SEx ellipse does not represent the total galaxy area. Both poor photometry and segmentation may effect the magnitude calculation.

A ‘velocity match’ galaxy (coded as 60, 61 and 62 in Table 2 and see Fig. 4) is chosen when a single galaxy’s NED and/or 6dF velocity is within 400 km s$^{-1}$ of the Hipass velocity, see section 4.2. A ‘good guess’ galaxy match (50, 51, 52) is chosen when there is no NED or 6dF velocity but there is a single galaxy within the image that could be a match. When there is no agreement on the choice for a galaxy, the image is viewed again by at least two people who then jointly decide on the correct match category for the galaxy.

Note that match categories with first digit = 4 have multiple galaxies present, some with similar velocity values (see Fig. 5), but the one with the nearest velocity to that of Hicat is chosen. In addition, if the first digit = 1, one galaxy is chosen without the aid of published velocities but appears to be part of a group.

3 THE OPTICAL HICAT CATALOGUE, HOPCAT

Once the optical matches are agreed upon, the data for the Optical Hicat catalogue, Hopcat, are collated. Calibration work is carried out and columns are added from calculations and information such as SuperCOSMOS plate numbers, galactic coordinate, $E(B-V)$ extinctions, galaxy
names and morphology. For a full description of the columns of HOPCAT’s see Table 4, later.

The raw data from the interactive visual matching process, ADRIC, produce uncalibrated magnitudes. As discussed in Section 2.4 we use the relationship between the calibrated SuperCOS data and the uncalibrated SExtractor analysed image magnitudes for magnitude calibration. The HOPCAT calibrated magnitudes are based on SExtractor’s MAG_AUTO as described in Section 2.2.

The calculated columns are: optical positions in h:m:s and d:m:s format, HICAT-HOPCAT position separation Δ and axis ratio with the position separation and axis ratio calculated using the following equations:

\[
\Delta = 2 \sin^{-1} \sqrt{\sin^2 \left(\frac{\Delta \text{Dec.}}{2} \right) + \cos (\text{Dec.}_\text{rad}) \cos (\text{Dec.}_\text{opt}) \sin^2 \left(\frac{\Delta \text{RA}}{2} \right)},
\]

(1)

\[
\text{axis ratio} = \frac{\text{semi major axis}}{\text{semi minor axis}}
\]

where \(\Delta \text{Dec.} = \text{Dec.}_\text{radio} - \text{Dec.}_\text{optical}\) and \(\Delta \text{RA} = \text{RA}_\text{radio} - \text{RA}_\text{optical}\).

Added columns are SuperCOSMOS image plate numbers, galactic coordinates with E(B - V) extinction values (Schlegel et al. 1998), and previously published optical galaxy names and morphologies (NED) for the matched galaxies.

The catalogue contains one line per HOPCAT entry. The full version of HOPCAT will be made available in Synergy, in the online version of this journal - see the ‘Supplementary Material’ section at the end of this paper. A searchable version of the catalogue is available on-line at http://HIPASS.aus-vo.org. This database is searchable in a number of ways, including by position and velocity. Returned parameters can be individually selected, along with any of the image products, including detection spectra, on-sky moment maps and position-velocity moment maps. The format of the returned catalogue data can also be chosen, with both HTML and plain text available.

4 RESULTS

Starting with the HI radio detections from HICAT and using SuperCOS images, SExtractor image analysis, and published and 6dFGS velocities for match confirmation, we find optical counterparts for 84 per cent of the HI radio source objects. We use multiple match categories to identify not only various kinds of matches but the reliability level of the resulting magnitudes. In this section we detail the optically matched galaxy results, analyse the resulting parameters, discuss the optical properties and possible candidates for dark galaxies.

4.1 Matched galaxy results

Optical counterparts for 3618 are identified from the 4315 HICAT HI radio sources, including good guesses. Of these 3618 optical counterparts, 972 images contain multiple possible matches, but the best galaxy match is chosen. It is possible that for the multiple velocity matches, the original HICAT velocity could be the average velocity for the whole group. A breakdown of the various categories is listed in Table 3 and a plot of the various categories for the whole southern sky are displayed in Fig. 6. It can be seen that, like the sky-plot in Paper I, clear structure is apparent. Also it should be noted that most of the blank fields are in the galactic plane.

Investigating the results from the matching process can be of great interest and can be used to validate our matching process. The relationship between the HI radio integrated flux and the \(B_{1}\) apparent magnitude illustrates whether there is any correlation between the HI radio and optical

Table 2. Match choice parameters for the optical counterparts for the HICAT HI detections

<table>
<thead>
<tr>
<th>Match Category Number</th>
<th>First Digit Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity match (60°, 61°, 62°)</td>
<td>Single velocity match with chosen SEx ellipse</td>
</tr>
<tr>
<td>Good guess (50°, 51°, 52°)</td>
<td>No velocity for SEx ellipse choice</td>
</tr>
<tr>
<td>Multi-velocity Match (40°, 41°, 42°)</td>
<td>Multiple galaxies within the field with: (\geq 1) matching velocity; (\geq 2) group members choose good/best galaxy including merging galaxies (see Fig. 5)</td>
</tr>
</tbody>
</table>
| Blank Field (30) | No apparent galaxies in field |}

Notes. a First digit is the category of the galaxy match. Second digit is the quality of the resulting magnitude value: 0 = good photometry and segmentation; 1 = poor photometry ; 2 = poor segmentation.
Table 3. Optical matching results. For category definitions, see Table 2.

<table>
<thead>
<tr>
<th>Match Category</th>
<th>Category Number</th>
<th>Number of objects from HICAT</th>
<th>Percentage of HICAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity Match</td>
<td>60, 61, 62</td>
<td>1798</td>
<td>42</td>
</tr>
<tr>
<td>Good Guess</td>
<td>50, 51, 52</td>
<td>848</td>
<td>20</td>
</tr>
<tr>
<td>Multi Velocity Match</td>
<td>40, 41, 42</td>
<td>714</td>
<td>16</td>
</tr>
<tr>
<td>Blank Field</td>
<td>30</td>
<td>216</td>
<td>5</td>
</tr>
<tr>
<td>No Guess</td>
<td>20</td>
<td>481</td>
<td>11</td>
</tr>
<tr>
<td>Multi Good Guess</td>
<td>10, 11, 12</td>
<td>258</td>
<td>6</td>
</tr>
</tbody>
</table>

Figure 6. Sky plot of all optically matched galaxies. The insert panel shows the various match categories for all the optical matches. For a full description of the match categories see Table 2.

detections. Fig. 7 shows the correlation between these two independent variables. There is a clear trend that shows, the lower the optical magnitude, the larger the HI radio flux.

When comparing the different match categories, the good guesses tend to reside in the lower left-hand quadrant of the magnitude-flux relationship compared to the velocity matches, with mean values of velocity matched magnitudes=13.8 mag and good guess magnitudes=14.9 mag. The lower mean magnitude for the good guess categories is an expected trend as the smaller the flux, the fainter the magnitude and hence optical detections and velocity measurements become more difficult.

When we compare our results with the next largest HIPASS-based study, the HIPASS BGC Koribalski et al. 2004, several HOPCAT optical matches disagree with those from the BGC. Some differences are owing to the choice of different galaxies from the same galaxy group. In HOPCAT members of a galaxy group are denoted by match categories 10, 11, 12, 40, 41, and 42. Other differences in the choice of optical counterparts are due to the different methods used.
in choosing the matching optical galaxy. As explained in detail in Section 2.5 our method involves the visual identification of galaxies using SuperCOS images, SExtractor image analysis of the images to ascertain the galaxy’s properties and position, and NED and 6dFGS velocities for cross-checking with HIPASS velocities to validate the optical match. In the case of the BGC however, the optical counterparts were chosen using velocity and position values from NED with some ATCA high resolution HI follow-up observations.

4.2 HI Radio-Optical Position and Velocity Separations

The separations between the HICAT HI radio and optical positions for various match categories are shown in Figs. 8-11. The rms position differences for the velocity matches are $\sigma_{\text{HICAT RA}} = 0.98$ and $\sigma_{\text{HICAT Dec}} = 0.94$ arcmin. In Paper II (Zwaan et al. 2004) fake synthetic point sources are produced to estimate position uncertainty of $\sigma_{\text{HIPASS RA}} = 0.78$ and $\sigma_{\text{HIPASS Dec}} = 0.54$ arcmin. When comparing Fig. 9 from Paper II HICAT-synthetic (point) source separation plots with our Figs. 8-11, there is clearly a higher position separation. The difference between our results and Paper II’s is $\sigma_{\text{RA}} = 0.59$ and $\sigma_{\text{Dec}} = 0.77$ arcmin. We estimate this difference according to:

$$\sigma_{\text{RA}}^2 = \sigma_{\text{HICAT RA}}^2 - \sigma_{\text{HIPASS RA}}^2$$

(3)

This difference might be accounted for by the difference in the objects being compared, i.e. synthetic point sources compared with our extended objects. One reason for this uncertainty is the difference between the central position for the HI radio- and optical-detected objects. Optically detected galaxies tend to be symmetric with a central peak luminosity whereas HI detections are more likely to be asymmetric and the peak flux density may not be central. This difference in symmetry and position for peak flux density and luminosity detected positions may cause the larger separation.

Fig. 8 shows the velocity matches that are verified by independent published velocities. Fig. 9 the good guesses, Fig. 10 the multiple velocity matches and Fig. 11 the multiple good guess matches. Note that there are fewer good guesses in the upper limits of the integrated flux. This is understandable since the high-flux galaxies are more likely to have previously observed bright optical counterparts (Fig. 7) with measured velocities. This means the larger σ for the good guesses is expected as this category matches mainly the fainter galaxies. We can deduce from the similar spread in the velocity matched and good guess plots that the good guesses are indeed acceptable optical counterparts for the HICAT HI radio sources.

The separation between HI radio and optical positions for the other two match categories, multiple velocity and multiple good guess matches, are shown in Figs. 10 and 11 respectively. For Fig. 10, there is a larger spread for multiple velocity matches position separations than for the velocity matches. These matches are from images that contain multiple galaxies with similar velocities. The galaxy with the closest independent published velocity value is chosen, although the original HI detection position could be either the highest or the total velocity of the whole group. This effect may distort the position separation where we use velocity for matching. We note that the good guess multiple galaxy matches also have a larger σ than the good guess matches (Fig. 11). We have high resolution 21cm radio observations for 40 of these velocity and good guess multiple galaxy matches and more observations are planned. From these extra observations we will be able to determine statistically the quality of these match categories.

For the optically matched galaxies, velocity matches (6), multiple velocity matches (4), good guesses (5) and multiple good guesses (1), any HI radio-optical galaxy separation greater than 7.5 arcmin are not considered a reliable match. Matches beyond this limit, corresponding to 0.6 per cent of the velocity matches, we use with caution. When confirming the HICAT velocities using published and 6dFGS velocities, some velocity difference cut-off is needed where galaxies with velocities greater than the cut-off are not considered a velocity confirmed optical match. Fig. 12 shows the distribution of galaxies that have velocity matched confirmation. From this we have determined the cut off value for confirmed velocity matches as 400 km s$^{-1}$ corresponding to 5σ. The majority of velocity confirmed optical matches have a velocity difference of < 100 km s$^{-1}$.

4.3 Candidate Dark Galaxies

As discussed in Section 1 the HICAT data may reveal whether isolated dark galaxy exist or not. From our matching process 216 are classed as blank fields. These fields contain no visible optical galaxies. The selection criteria used to search for dark galaxy candidates are extinction cut-off and the blank field category. HOPCAT contains $E(B-V)$ extinction values but as we are using B_j images, a correction must be applied, $A_{B_j} = 4.035 E(B-V)$ (Schlegel et al., 1998). We compare the A_{B_j} extinction distribution for all the HOPCAT galaxies and the blank field category (Fig. 13), and take an A_{B_j}
Figure 8. Separations between the Hicat and Hopcat optical positions for velocity matched galaxies (match categories 60, 61 and 62). The top panel shows the difference between the HI radio and optical RA and Dec. positions. For the middle and bottom panels, the left-hand panels are histograms of the HI radio and optical position differences fitted by Gaussian profiles with the parameters indicated in the top left hand corner. The right-hand panels show the relationship between the integrated flux and the position separation for RA and Dec. respectively. See Table 2 for full match category descriptions.

Figure 9. Separations between Hicat and Hopcat optical positions for good guess matched galaxies (match categories 50, 51 and 52). See Fig. 8 for panel descriptions and Table 2 for full match category descriptions.

Figure 10. Separations between Hicat and Hopcat optical positions for multiple velocity matched galaxies (match categories 40, 41 and 42). See Fig. 8 for panel descriptions and Table 2 for full match category descriptions.

extinction cut at 1 mag as, beyond this extinction, optically faint galaxies will be dust obscured.

A total of 3692 galaxies have an A_{B_j} extinction < 1 mag, with only 13 galaxies also in the blank field category. From these, 11 are found to be in over-crowded fields. One object, HIPASSJ1351-47, on close inspection does have a faint optical counterpart. This object is listed in Banks et al. (1999) as a new galaxy in the Centaurus A group. The final dark galaxy candidate is not a real HI detection. As described in Zwaan et al. (2004), many Hicat detections have been re-observed with the Parkes Narrow band system to assess the reliability of Hicat. Marginal sources confirmed as false detections were removed from the catalogue, however, not all sources were re-observed. This final dark galaxy candidate, HIPASSJ1946-48, has recently been confirmed as a false detection.

Our conclusion is that from the 4315 HI radio detections in Hicat, of which 3692 galaxies have an A_{B_j} extinction < 1 mag, no isolated dark galaxies have been found.

4.4 Mass-to-light ratio.

We investigate the mass-to-light ratio using the HI mass and B_j band luminosity ratio for optically matched Hicat HI radio sources. The original B_j apparent magnitudes are extinction corrected and have an A_{B_j} extinction < 1 mag (Fig. 14). The majority of these galaxies have mass-to-light ratios less than $5 \, M_\odot/L_\odot$. The number of galaxies rapidly decreases with increasing mass-to-light ratio up to $13 \, M_\odot/L_\odot$. The one galaxy with an higher mass-to-light ratio, HIPASSJ1227+01 at 24.5 M_\odot/L_\odot, is a LSB galaxy where the image analysis process is not able to calculate a SEx ellipse that represents the total area of the galaxy, hence the luminosity is underestimated. This object, was
first discovered by Giovanelli & Haynes (1989) and has a measured mass-to-light ratio of 10.3 M_{HI}/L_B in Salzer et al. (1991).

When comparing our mass-to-light ratios with a subset of HIPASS of the South celestial cap region (Kilborn et al. 2002), though a much smaller sample, the same mass-to-light relationship is found. Again most galaxies have a ratio less than 5 M/L with quickly decreasing galaxy numbers for increasing mass-to-light ratios up to 13 M/L and few galaxies with greater than 15 M/L.

5 SUMMARY

Our catalogue, Hopcat, matches the HIPASS Catalogue, Hicat entries with their optical counterparts and is the largest catalogue ever produced that optically identifies HI radio detected sources. We identify optical counterparts for 84 per cent of the HI radio sources. Of these 20 per cent have multiple possible matches. No guess is possible for 11 per cent and 5 per cent are blank fields. Most of the blank fields are in crowded fields along the galactic plane or have high $E(B-V)$ extinction. For a full description of Hopcat’s columns see Table 4 Using an extinction cut of A_{B_J} < 1 mag and the blank field category, only 13 HI radio sources remain in our dark galaxy search. Of these, 12 are eliminated due to over-crowded fields or by Parkes Narrow-band follow-up observations. The remaining one, on close inspection, does have a faint optical counterpart. Our conclusion: no isolated dark galaxies exist within the limits of the HIPASS survey. All Hicat data including optical counterparts is available on-line at http://HIPASS.aus-vo.org. We encourage other researchers to make use of this database. For optimum utility, researchers also need to be aware of the completeness, reliability and accuracy of the measured parameters. These are described in detail in Paper II (Zwaan et al. 2004) and the optical data in this paper. In particular, users are reminded of the uncertainties associated with the various two digit match categories. These define the choice of the optical match; velocity match (6s), good guess (5s) etc and the quality of the match; good quality match (0), poor photometry (1), and poor segmentation (2). Users are also encouraged to be familiar with the full processing of HIPASS data (Barnes et al. 2001; Meyer et al. 2004).
Figure 14. HI Mass to B_j Light ratio plots. Left: For all matched galaxies with A_B extinction < 1mag. Right: Enlargement showing the rapid decrease in the number of galaxies as the mass-to-light ratio increases out to $13 M_{HI}/L_{Bj}$ and one high mass-to-light ratio LSB galaxy where the image analysis process is not able to calculate an SEx ellipse to represent the total area of the galaxy, hence underestimating the luminosity.

ACKNOWLEDGMENTS

The Multibeam system is funded by the Australia Telescope National Facility (ATNF) and an Australian Research Council grant. The collaborating institutions are the Universities of Melbourne, Western Sydney, Sydney, Cardiff, the Research School of Astronomy and Astrophysics at Australian National University (RSAA), Jodrell Bank Observatory and the ATNF. The Multibeam receiver and correlator is designed and built by the ATNF with assistance from the Australian Commonwealth Scientific and Industrial Research Organization Division of Telecommunications and Industrial Physics. The low noise amplifiers used for HIPASS were provided by Jodrell Bank Observatory through a grant from the UK Particle Physics and Astronomy Research Council. The Multibeam Survey Working Group is acknowledged for its role in planning and executing the HIPASS project. This work makes use of the AIPS++, MIRIAD and KARMA software packages.

We would also like to acknowledge the assistance of the 6dF Galaxy Survey conducted primarily by The Anglo-Australian Observatory, and with support from RSAA and the Wide-field Astronomy Unit of the University of Edinburgh. Also to Danielle Parmenter who helped with the first full HI radio/optical galaxy matching.

This research has made use of the NASA/IPAC Extragalactic Database which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

MTD is supported through a University of Queensland Graduate School Scholarship. KAP acknowledges support from an EPSA University of Queensland Research Fellowship and UQRSF grant. This work has also been supported by a University of Queensland Research Development Grant and by DP and LIEF grants from the Australian Research Council.

REFERENCES

SUPPLEMENTARY MATERIAL

The following supplementary material is available for
this article online. The full version of the HOPCAT catalogue. This paper has been typeset from a \texttt{\LaTeX} file prepared by the author.
Table 4: HIPASS parameter description

<table>
<thead>
<tr>
<th>Column No.</th>
<th>Parameter</th>
<th>Database Name</th>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ID</td>
<td>ID</td>
<td>N/A</td>
<td>Names are of the form Hipass JXXXXXY[a-z], where is the unrounded source RA in hrs and min, and YY is the unrounded source declination in degrees. An additional letter a-z is added where necessary to distinguish sources.</td>
</tr>
<tr>
<td>2</td>
<td>Hipass Name</td>
<td>hipass_name</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>HI radio Right Ascension</td>
<td>RA</td>
<td>h:m:s</td>
<td>RA (J2000 hexadecimal format)</td>
</tr>
<tr>
<td>4</td>
<td>HI radio Declination</td>
<td>Dec.</td>
<td>d:m:s</td>
<td>Dec. (J2000 hexadecimal format)</td>
</tr>
<tr>
<td>5</td>
<td>HI Velocity (^b)</td>
<td>velmom</td>
<td>km s(^{-1})</td>
<td>Flux weighted velocity average between manually specified minimum (v_{lo}) & maximum (v_{hi}) profile velocity</td>
</tr>
<tr>
<td>6</td>
<td>HI Velocity Width</td>
<td>width_{50max}</td>
<td>km s(^{-1})</td>
<td>Difference of velocity at which profile reaches 50 per cent of peak flux density</td>
</tr>
<tr>
<td>7</td>
<td>HI Peak flux Density</td>
<td>Sp</td>
<td>Jy</td>
<td>Peak flux density of profile</td>
</tr>
<tr>
<td>8</td>
<td>HI Integrated flux</td>
<td>Sint</td>
<td>Jy km s(^{-1})</td>
<td>Integrated flux of source (within region (v_{lo}) and (v_{hi}) and box size)</td>
</tr>
<tr>
<td>9</td>
<td>Semi-major Axis</td>
<td>A_IMAGE</td>
<td>pixel</td>
<td>Profile rms along major axis</td>
</tr>
<tr>
<td>10</td>
<td>Semi-minor Axis</td>
<td>B_IMAGE</td>
<td>pixel</td>
<td>Profile rms along minor axis</td>
</tr>
<tr>
<td>11</td>
<td>Position Angle</td>
<td>THETA_IMAGE</td>
<td>°</td>
<td>Position angle</td>
</tr>
<tr>
<td>12</td>
<td>6dF Velocity (^b)</td>
<td>Velocity_{6dF}</td>
<td>km s(^{-1})</td>
<td>Velocity from 6dF Data</td>
</tr>
<tr>
<td>13</td>
<td>NED Velocity (^b)</td>
<td>Velocity_{Ned}</td>
<td>km s(^{-1})</td>
<td>Velocity From NED Data</td>
</tr>
<tr>
<td>14</td>
<td>Optical Match Category (^a)</td>
<td>Class(Matched_choice)</td>
<td>N/A</td>
<td>Our category matching choice</td>
</tr>
<tr>
<td>15</td>
<td>Optical RA</td>
<td>SExRA</td>
<td>°</td>
<td>RA (J2000)</td>
</tr>
<tr>
<td>17</td>
<td>Optical RA (h:m:s)</td>
<td>Matched_RA_H:M:S</td>
<td>h:m:s</td>
<td>RA (J2000)</td>
</tr>
<tr>
<td>19</td>
<td>Calibrated B(_1) Magnitude</td>
<td>B(_1)MagAUTO</td>
<td>mags</td>
<td>B(_1) band calibrated magnitude based on SExtractor</td>
</tr>
<tr>
<td>20</td>
<td>Calibrated R Magnitude</td>
<td>Red(_R)MagAUTO</td>
<td>mags</td>
<td>R band calibrated magnitude based on SExtractor</td>
</tr>
<tr>
<td>21</td>
<td>Calibrated I Magnitude</td>
<td>I(_I)MagAUTO</td>
<td>mags</td>
<td>I band calibrated magnitude based on SExtractor</td>
</tr>
<tr>
<td>22</td>
<td>SuperCOSMOS B(_J) Plate Number</td>
<td>BluePlateNumber</td>
<td>N/A</td>
<td>B(_J) band SuperCOSMOS original image plate number</td>
</tr>
<tr>
<td>23</td>
<td>SuperCOSMOS R Plate Number</td>
<td>RedPlateNumber</td>
<td>N/A</td>
<td>R band SuperCOSMOS original image plate number</td>
</tr>
<tr>
<td>24</td>
<td>SuperCOSMOS I Plate Number</td>
<td>IPlateNumber</td>
<td>N/A</td>
<td>I band SuperCOSMOS original image plate number</td>
</tr>
<tr>
<td>25</td>
<td>l</td>
<td>HicatExtl</td>
<td>°</td>
<td>Galactic longitude</td>
</tr>
<tr>
<td>26</td>
<td>b</td>
<td>HicatExtb</td>
<td>°</td>
<td>Galactic latitude</td>
</tr>
<tr>
<td>27</td>
<td>Extinction (E(B-V))</td>
<td>HicatExt</td>
<td>mag</td>
<td>Extinction values (Schlegel et al., 1998)</td>
</tr>
<tr>
<td>28</td>
<td>RA HI radio-Optical Position Separation</td>
<td>DiffRaArcmin</td>
<td>arcmin</td>
<td>RA Position separation Hicat-Hopcat (radio-optical)</td>
</tr>
<tr>
<td>30</td>
<td>Galaxy HI radio-Optical Position Separation</td>
<td>GalSepArcmin</td>
<td>arcmin</td>
<td>Galaxy Position separation Hicat-Hopcat (radio-optical)</td>
</tr>
<tr>
<td>31</td>
<td>Axis Ratio</td>
<td>AxisRatio</td>
<td>N/A</td>
<td>Semi-major Axis/Semi-minor Axis</td>
</tr>
<tr>
<td>32</td>
<td>Published Optical Galaxy Name</td>
<td>Galaxy Name</td>
<td>N/A</td>
<td>Published Optical Names from NED</td>
</tr>
<tr>
<td>33</td>
<td>Published Morphology</td>
<td>Morphology</td>
<td>N/A</td>
<td>Published Morphology from NED</td>
</tr>
</tbody>
</table>

Notes:\(^a\) Two-digit optical match category. First Digit: 6=velocity match; 5=Good Guesses; 4=multiple velocity match; 3=blank field; 2=no guess; 1=multiple good guess. Second digit: 0 = good photometry and segmentation, 1 = Poor photometry, 2 = poor segmentation. \(^b\) All velocities are \(cz\) and Heliocentric.